a_popov: (нудно и заумно)
[personal profile] a_popov
Материал из вики

Числа Фибоначчи — элементы числовой последовательности в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени итальянского математика средневековой Европы Леонардо Пизанский (прозвище Фибоначчи, что обозначает «хороший сын родился»).

Последовательность Фибоначчи была хорошо известна в древней Индии, где она применялась в метрических науках (просодии, другими словами — стихосложении), намного раньше, чем она стала известна в Европе.

Образец длиной n может быть построен путём добавления S к образцу длиной n-1, либо L к образцу длиной n-2; и просодицисты показали, что число образцов длиною n является суммой двух предыдущих чисел в последовательности. Дональд Кнут рассматривает этот эффект в книге «Искусство программирования».

На Западе эта последовательность была исследована Леонардо Пизанским, известным как Фибоначчи, в его труде «Liber Abaci» (1202). Он рассматривает развитие идеализированной (биологически нереальной) популяции кроликов, предполагая что:

  • В «нулевом» месяце имеется пара кроликов (1 новая пара).
  • В первом месяце первая пара производит на свет другую пару (1 новая пара).
  • Во втором месяце обе пары кроликов порождают другие пары и первая пара погибает (2 новые пары).
  • В третьем месяце вторая пара и две новые пары порождают в общем три новые пары, а старая вторая пара погибает (3 новые пары).

Закономерным является тот факт, что каждая пара кроликов порождает ещё две пары на протяжении жизни, а затем погибает.

Пусть популяция за месяц n будет равна F(n). В это время только те кролики, которые жили в месяце n-2, являются способными к размножению и производят потомков, тогда F(n-2) пар прибавится к текущей популяции F(n-1). Таким образом общее количество пар будет равно F(n) = F(n-1) + F(n-2).



Вот видео наглядно демонстрирующее числа Фибоначе в жизни.

Интересное рядом..хуле



Profile

a_popov: (Default)
a_popov

September 2012

S M T W T F S
      1
2345678
9101112131415
16171819202122
23242526272829
30      

Style Credit

Expand Cut Tags

No cut tags
Page generated May. 23rd, 2025 11:29 am
Powered by Dreamwidth Studios